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The method of momentum density for interatomic interactions is used to 
investigate the pictures and roles of the polarization and floating functions 
in momentum (p-) space. Referring to the previous results from the minimal 
LC AO (Finkelstein-Horowitz) momentum density, we quantitatively discuss 
the effect of these functions for the bonding process in the ground state of 
H + 2 system. The essence of the polarization and floating effects is found to 
be a modulation of the oscillation in the two-center part of the momentum 
density. The polarization function introduces a term with a phase and the 
floating function enlarges the period of the oscillation. An increased migration 
of the density from the one-center to the two-center part is also important. 
As a result, both the functions contribute to emphasize the contraction and 
expansion of momentum density observed previously. However,  the floating 
function disturbs the density distribution in high momentum region, reflecting 
the destruction of cusps in position (r-) space. We point out an error in the 
pioneer work of Duncanson. 
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1. Introduction 

Recently [ 1-5], we have proposed and developed a method of momentum density 
which enables us to understand the origin of various nuclear rearrangement 
processes of molecular systems from the momentum (p-) space point of view. 
Based on the virial theorem, we have derived three sets of fundamental equations 
of this approach which rigorously relate the momentum density to the energy 
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E and interatomic force F of a system [1]. These equations have been used to 
investigate the reorganization of the momentum density and its energetic contri- 
bution during interaction processes. We have then suggested that the contraction 
and expansion of momentum density are important concepts which characterize 
the nature of interactions in p-space. 

The momentum density approach has been applied to the attractive lso-g and 
repulsive 2po'u states of H~ system [2]. Based on the Finkelstein-Horowitz (FH) 
wave function [6], the predicted density reorganizations of the contraction and 
expansion have been shown to actually occur. The contributions of these density 
behaviours to the stabilization and destabilization of the system have been 
examined quantitatively together with their atom-bond and parallel-perpen- 
dicular partitionings. The method has been also applied to the 2pTru and 3d~'g 
states of the same system and the concept of this approach has been shown to 
be valid and common to both the o- and ~r states [4]. We have further shown 
that rigorous relations between the energy and the momentum density can 
be deduced from the integrated Hellmann-Feynman theorem [7] with respect 
to the electron mass [3]. More recently, the approach has been proved to be 
applicable to a wide range of nuclear rearrangement problems, in which 
several bond lengths or bond angles may be concerned in a complicated 
manner [5]. 

The purpose of this paper is to study the pictures and roles of the polarization 
(for example, see [8-10]) and floating [10-.12] functions from the p-space point 
of view. Because of the increased variational freedom, both the polarization and 
floating functions certainly improve the density distribution with a concomitant 
decrease in the energy. A position (r-) space picture of this improvement can 
be obtained from the electrostatic Hellmann-Feynman theorem [13, 14] which 
connects the position density with the quantum-mechanical force exerting on 
nucleus: During the bonding process, the in-phase mixing and inward floating 
of the respective functions accelerate the polarization of atomic density and the 
accumulation of bond density, which result in an increase of the driving force 
of the bond formation. The increase in attractive force is a direct reflection of 
the decrease in energy caused by the polarization and floating effects appearing 
in the position density (cf. integrated Hellmann-Feynman theorem [7]). 

In the following, we investigate the corresponding pictures and roles of the 
polarization and floating functions in p-space by using the proposed method of 
momentum density [1-5]. We have again chosen the 1Strg state of H § 2 system 
which is a prototype of the covalent bonding, and for which the results of the 
minimal LCAO momentum density have been already known [2]. The present 
method of momentum density is outlined in the next section. The polarization 
and floating effects are qualitatively discussed in Sect. 3 based on the p- 
representation of the functions. In Sect. 4, we quantitatively examine the effects 
of the polarization and floating functions on the momentum density during the 
bonding process. 

We use atomic units throughout this paper. 
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2. Basic Concepts of Momentum Density Approach 

In the momentum density approach, either of p(p), I(p),  or J(q) is acceptable 
as the basic physical quantity [5], where p (p) is the three-dimensional momentum 

�9 2 ~  w 2 , 

density, I(p) [ ~ o  dqbp ~o dOpp sm 0pp(p)] the radial momentum density, and 
J (q ) [ - (1 /2 )  ~lq~ dp p-lI(p)] the Compton profile. The same guiding principles 
hold for the behaviours of these quantities. For simplicity, we here proceed with 
our study using the radial density and Compton profile. 

The basic equations, which exactly relate the momentum density to the kinetic 
energy AT, the stabilization energy AE, and the interatomic force F of a diatomic 
system, are given by [1, 2] 

o o  

AT(R) = T(R) - r(oo) = J0 dp (p2/2)AI(p ; R), (la) 

I *  
c O  

&E(R)~E(R)-E(oo)=Jo dp (p2/2)Af(p;R), (lb) 

o o  

F(R) =-dE(R)/dR = ( l /R )  Jo dp (p2/2)zk[(p; R), (lc) 

where p = IP[, R the internuclear distance, and the reorganizations in the radial 
momentum density are defined by 

M(p; R) =-I(p; R)- I (p;  oo), (2a) 

t *  oO 

A[(p; R)-= ( I /R)  JR dR' AI(p; R'), (2b) 

A/'(p ; R)=M(p; R ) +  A/(p ; R). (2c) 

Eq. (1) holds for all I(p) as far as their parent wave functions satisfy the virial 
theorem. Because of the conservation of the number of electrons, the density 
differences AI, A[, and M" vanish identically when integrated over all p range. 
Then from Eq. (1), we can deduce the guiding principles of contraction and 
expansion which govern the nature of interactions [1]. (Contraction means an 
increase of low momentum density with a simultaneous decrease of high momen- 
tum density, while expansion means the opposite redistribution.) For example, 
the contraction/expansion of M" imply AT<O/AT>O respectively and are 
important for the initiation/termination of chemical reactions. The contrac- 
tion/expansion of A[ result in zkE < 0 (stabilization)/fioU > 0  (destabilization) 
and the degree of contraction is largest at equilibrium distance. The contrac- 
tion/expansion of 2ff correspond to F < 0  (attraction)/F > 0 (repulsion) and 
their critical point may be identical with the equilibrium point (F = 0). 

Two energy partitionings are examined here based on Eqs. (1) and (2). One is 
atom-bond partitioning which results from the separation of I (p) into one-center 
(atom) and two-center (bond) parts; 

AE (R) = AE.to~(R) + AEbond(R), (3 a) 
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o o  

~kEat~ = fo dp (p2/2) A•tom(P; R) ,  

o o  

fo dp (p2/Z) A[bond(p;R). (3C) AEbond(R) 

The other is parallel (11) - perpendicular (_L) partitioning which results from the 
separation of the kinetic operator into the three directional components along 
and normal to the bond axis; 

AE (R) = AEtI(R ) + 2AE• (R), (4a) 
�9 + c O  

t "  

AEII(R) = J_ dpl I (p~/2)A~l(pll;R), (4b) 
o o  

# + c o  

AE• = | dp. (pZ/Z)~•177 (4c) 
J _  o o  

where A.~l and A J• are obtained from Eq. (2) by replacing I(p) with the 
directional Compton profiles JII(PlI) = ~+--~ dp• ~_+~ dp• p (0) and l•  = 
~+~d f+~ " - PlIJ-~ ap• 0 (P). We can partition AT and F in the same way. 
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(3b) 

3. Polarization and Floating Functions in Momentum Space 

3.1. Polarization Function 

The wave function for the lSO'g state of H~-, which consists of the ls  AOs  and 
the additional 2ptr polarization AOs,  has been referred to as Dickinson (DK) 
function [15], and is given by 

~(r)  = (2 + 2S)-I/2{XA(r) +xs(r)}, (5a) 

xxa(r) = CllSA(r) +c22pO'A(r). (5b) 

n (r) = c 1 lsn (r) - c22po'n (r), (5c) 

t lSA(r) = ((3/~r)1/2 exp (--~']r-RAI), (5d) 

2po'A(r) = (srS/Tr)l/2lr- RAICOS OA exp (--fflr- RAI), (5e) 

where S is the overlap integral, RA the position vector of nucleus A (R = I RB -- RAI) 
and OA the angle between the vectors r - R A  and R B -  RA. The exponent ~" and 
the coefficients cl and c2 are variationally optimized for every R, and this 
guarantees the validity of Eq. (1). 

The Dirac-Fourier  transformation [16] of Eq. (5) yields the corresponding 
p-space wave function 

4t (0) = (2 + 2S)-1/2{XA(0) +XB (P)}, (6a) 

XA (0) = exp (--i p RA){C 11 s (p) + c22po" (p)}, (6b) 

XB (la) = exp (--ipRs){cxls(p) --c22p(r(p)}, (6c) 
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t 
ls(p) = 23/2"rr-l~5/2(p 2 + st2) -2, (6d) 

2po'(p) = -i27/2r (p2 + ~.2)-3 cos 0p, (6e) 

where the spherical polar coordinates p = (p, 0p, ~bp) are used with the Pz axis 
parallel to the bond axis. Then the radial density is found to be 

I (p ;  R) =/,tom(p; R) +/bond(P; R),  (7a) 
r 
iiatom(p;R ) 5 - 1  5 - 1  2 2 2 ~ 2 ) - 4  = 2  zr ~ ( I + S )  p {cl(p + 

+ c 2 243-1(2pZ(p2 + ~2)-6}, (7b) 

J Ibo.d(p ; R) = 25r + S)-lp2{c 2 (p2 + ~2)-4(Rp)-1 sin (Rp) 

+ c lc223R -a~.(pZ + ~.2)-5[(Rp)-1 sin (Rp) - cos (Rp)] 

+ c 2 24R -1~2(p 2 + ~.2)-612 R -2p-1 sin (Rp) 

-2R-1 cos ( R p ) - p  sin (Rp)]}, (7c) 

and the directional Compton profiles are 
- 1  2 --1 2 Jtl(PII; R)  = 23zr-1~'5(1 + S) {c 13 (pll + ~2)-3[ 1 + COS (RPll)] 

+ clc22Cptl(p~ + ~2)-4 sin (Rpl I) 
2 , ~ 4 ~ - 1 ~ 2  2 z  2 c2z ~ ~ Pll tPll +~2)-5[ 1 - c o s  (Rpll)]}, (8a) 

J•177 R) = ~--1#5(1 + S)-X{c 2 3-1123(p~ + s + R 3(p 2 + C2)-3/2g3(z)] 

--1 4 2 
+ C L C 2 3  ~R (p• +(2)-3/2K3(z ) 

2 - 1  2 4 2 +c25 ff [2 (p_L +~2)-4 
n 4,.~--lz 2 - ~  J ~p• +ff2)-2(g4(z)-zg3(z))]},  (8b) 

where z = R (p2 + ~2)1/2 and Kv(z) the modified Bessel function of order v [17]. 
The reorganizations from the isolated atoms are obtained b'y subtracting the 
corresponding quantities for the hydrogen atom, Iatom(p ; ~176 2 + 1) -4, 
Ibond(P ; 00)=0, 3 - a  --1 2 JII(PlI; oo)=2 3 7r (Pll 41)  -3, andJz(p•  oo)=fll(P• oo). 

If we set ca = 1 and c2 = 0 and optimize only ~, the above results (5-8) reduce 
to those for the Finkelstein-Horowitz (FH) wave function [6], which were 
examined previously [2] and are the reference in the present study of polarization 
and floating effects. 

Now we discuss the polarization effect in p-space based on the functional forms 
of the radial densities and Compton profiles. As a first approximation of the 
effect, we examine the part proportional to clc2 which arises from the interaction 
between the ls  on one nucleus and the 2po- on the other, since the coefficient 
c2 is at most a sixth of ca during the bonding process. (Note that the clc2 part 
also appears in the overlap integral S and SD~ is larger than SFH.) The atom 
part (Eq. (7b)) does not contain the clc2 term, and is same in form as FH, i.e., 
a monotonic function p2(p2+ff2)-4 with a peak at p = 3-1/2~. However, since 
SDK> SVH and c 2 < 1, the polarization effect reduces the scale of the distribution 
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Fig. 1. Schematic representation of the polarization and floating effects on the atom and bond parts 
of the radial momentum density 

and decreases the atomic charge (Fig. la). On the other hand, the ClC 2 term in 
the bond part (Eq. (7c)) is an oscillating function (Rp) -1 sin (Rp)-  cos (Rp) with 
the "envelope" function 287r-lR-l~'6(1 +S)-lp2(p2+(2) -5. This trigonometric 
part can be rewritten as [l+(Rp)-2]l/2sin[Rp-arctan (Rp)] and includes a 
"phase" arctan (Rp) which takes a value between 0 and ~-/2. In the DK density, 
the oscillation of the bond part is modulated by the mixing of the corrective 
ClC2 term into the FH part with (Rp) -1 sin (Rp) so as to shift towards higher p 
region. Then for a large R where SDK- SFH, the DK bond density migrates into 
lower p region than the FH density due to this modulation (see the right of Fig. 
lb). For a small R where SDK > SFH, however, the DK density inversely migrates 
into higher p region, since the "envelope" of DK becomes smaller than that of 
FH (see the left of Fig. lb). Consequently, the polarization effect contributes to 
increase the low momentum density at a large R and to increase the high 
momentum density at a small R, through the modulation of the bond part and 
the increased density transfer from the atom to the bond part. 

For the parallel part (Eq. (8a)) of the directional partitioning, the correction 
term of sin (Rpll) is added which differs from the FH term of cos (Rpl I) by the 
phase 7r/2. Therefore, the polarization effect on this part is expected to be similar 
to that on the bond part. The correction term for the perpendicular part (Eq. 
(8b)) has the same functional form as the parent FH density ( (p~+ 
;~2)-3/2Ka(R [p2 + ~.211/2)) and no essential difference is observed. 

The distributions I(p) and JII(PlI) of the 2ptr AO are more expansive and J• 
is more contractive than those of the ls  AO. When the terms proportional to 
c 2 are taken into account, these characters may be introduced as the second-order 
correction to the FH distributions. 

In the derivation of the DK momentum density (Eq. (7)), we have found a 
significant error in the pioneer work of Duncanson [18]. In his expression for 
the momentum density, the clc2 term is dropped out (Eq. (6) of Ref. [18]) and 
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he concluded that there is little difference between the DK and FH densities 
(Fig. 1 of Ref. [18]). (The error seems to have been caused by the confusion of 
the left- and right-handed coordinate systems for the 2po- AOs in transforming 
the wave function from r- to p-space.) However, as discussed above, the ClC2 
terms are shown to play an important role of the polarization effect in the 
improvement of the momentum density and Compton profile (see Sect. 4 for 
quantitative discussion). 

3.2. Floating Function 

Setting Cl = 1 and c2=0  and substituting R ' = R - 2 x  for R in Eqs. (5-8), we 
obtain expressions for the floating (FL) function, where x stands for the displace- 
ment of the center of the ls  AO from the nucleus and is taken to be positive 
when the AO floats inside the bond. The FL function is a generalization of the 
FH function by the introduction of another variational parameter x and the 
simultaneous optimization of x and ~'. 

The floating effect on the atom part of the momentum density merely reduces 
the scale of the distribution, since the inward floating (x > 0) results in SFL > SFH 
(Fig. la). The oscillation of the bond part depends on (R'p) -~ sin (R'p), and is 
modulated by the positive x so as to increase its period than that of FH. Then 
for a large R where SvL--Svn, the floating effect transfers the bond density 
towards the low p region, whereas for a small R where SFL>SFH and the 
envelope is smaller, it causes a reverse migration of the bond density (Fig. lb). 
The results are parallel to those of the polarization effect. This parallelism is 
also supported by the fact that the Taylor expansion of the FL oscillation is 
(Rp) -1 sin (Rp) + {2R-I[(Rp)-I sin (Rp) "-cos (Rp)]}x + O(x 2) and its first-order 
term is identical with the c~c2 part of the DK oscillation. In the directional 
Compton profiles, the parallel part suffers the effect similar to that on the bond 
part, since it is in proportion to cos (R'pll) with a longer period than FH. The 

p3 t 2 perpendicular part contains R K3(R[pl+(2]x /2)=R3K3(R[p]+(2] t /2)+ 
{2[fl] -t-~'211/2R 3Kz(R [p~ + ~'211/2)}x + O(x 2) and hence little change is expected 
since the first-order term behaves similarly to the zeroth-order FH term. 

3.3 Discussion 

From the above analysis, the essence of the polarization and floating effects is 
clarified to be the modulation of the oscillation in the two-center part of 
momentum density. Both the effects lead to an increase of the low momentum 
density for a large R and to an increase of the high momentum density for a 
small R. According to our previous study [2], the reorganization of the FH 
density from the separated atoms is contraction for R > 2.7 and expansion for 
R < 2.7. Then the polarization and floating effects contribute to increase the 
contraction and expansion of the momentum density for the respective R 
ranges. 

The primary pictures of the polarization and floating functions in r-space are 
the inward polarization of atomic density and the increased density accumulation 



46 T. Koga et al. 

in the bond  reg ion  [10]. H o w e v e r ,  the co r re spond ing  pic ture  in p-space  is 

d is t inguished b e t w e e n  the con t rac t ion  at a large R and the expans ion  at a small  

R.  This  implies  that  we must  unde r s t and  the increase  of the posi t ion densi ty  in 

the in te rnuc lea r  reg ion  as the densi ty  de loca l iza t ion  at a large R,  while  as the  

densi ty  local iza t ion  at a small  R.  

It  is c lear  f rom the virial  t h e o r e m  and the  equa t i on  der ived  f r o m  it that  these 

increases  in the con t rac t ion  and expans ion  resul t  in a s tabi l izat ion of  the system 

[1]. F o r  a large R,  a dec rease  in A T  due  to the increased  con t rac t ion  lowers  A E  
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Fig. 2. Radial momentum densities I(p) and isotropic Compton profiles J(.q) calculated from the 
FH, FL, DK, and exact functions for the lso, g state of H~- molecule 

Table 1. First three nodal points on the Pz axis calculated from several wave 
functions § for the ground state of H2 molecule (R = 2) a 

Nodal points 

Wave function De 1st 2nd 3rd 

Finkelstein-Horowitz 0.08651 1.571 4.712 7.854 
Floating 0.09416 1.732 5.197 8.662 
Dickinson b 0.09980 1.860 4.866 7.953 
Dickinson c 0.10036 1.886 4.932 8.003 
Exact d 0.10263 2.03 4.98 8.07 

a Because of the inversion-symmetry of the p-space wave function, the nodes 
for Pz > 0 are given. 
b With the same exponent for the ls and 2pcr AOs. 
c With the separately-optimized exponents for the ls and 2pcr AOs. 
d Nodal points are taken from Ref. [21] and De from Ref. [22]. 
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through the relation AE(R) = ( l / R )  I~ dR' AT(R'). In the vicinity of the equili- 
brium distance Re, an increase in AT due to the increased expansion again lowers 
AE through the relation A E - - A T .  These reorganizations of the momentum 
electron density and the resultant effects on the stabilization energy are more 
directly connected by the use of the modified density difference Af (p ;  R)  which 
was introduced previously [1, 2] and is quantitatively examined in the next 
section. 

4. Polarization and Floating Effects during the Bonding Process 

In Fig. 2, the radial momentum densities [(p) and the isotropic Compton profiles 
](q) obtained from the DK, FL, and FH functions are shown for the equilibrium 
H~- molecule (R = 2) and compared with the exact [19, 20] and hydrogen-atomic 
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Fig. 3. The polarization and floating effects on the radial momentum densities I and f 
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distributions. As discussed in Sect. 3, the DK and FL densities are more expansive 
than the FH density, reflecting the increased localization of the position density 
inside the bond. The improvements by the polarization and floating functions 
are clear and the Duncanson's conclusion [18] that the I(p)s for DK and FH 
are almost superimposable is erroneous. Table 1 compares three nodal points 
of the p-space wave functions for the molecule along the Pz axis. The results of 
Fig. 2 and Table 1 show that the improvement is parallel to the accuracy of 
dissociation energy De. However, the third nodal point of FL takes more wrong 
value than that of FH, and the FL function is seen to"deteriorate" the momentum 
distribution in high p region. This is attributed to the fact that the floating 
destroys the density cusps at the nuclei in r-space [10]. Note that though the 
DK and exact functions have non-periodic nodal points, the FL and FH functions 
have periodic ones due to the term cos (RpJ2). 

In Fig. 3a, the density difference 8I [------I -- IFH] is given which refers to the 
polarization and floating effects on the momentum density. (Note that 8 indicates 
changes from FH, while A indicates changes from the separated atoms.) At 
R = 8, DK and FL show an increase of low momentum density with an r-space 
picture of the inward polarization of the atomic density. At this R, the contraction 
increases and results in ATDK<ATFL<ATFH (Fig. 4c). At R --4, the DK and 
FL functions have both the contractive and expansive characters when compared 
with the FH function, suggesting the co-existence of two opposite pictures in 
r-space, the enlargement of the space of electronic motion due to the accumula- 
tion of bond density and the reduction of that space due to the expence of the 
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Fig. 4. Kinetic energies obtained from the FH, FL, and D K  m o m e n t u m  densities. Their decomposi-  
tions into the a tom-bond  and parallel-perpendicular components  are also shown 
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density outside the bond. Because of the expansive 2po- AO, the density decrease 
around p - 0.3 shows noticeable difference between DK and FL. In r-space, the 
FL and FH functions with the spherically-symmetric atomic densities do not 
have sufficient density localization along the bond axis. When the kinetic operator  
p2/2 is applied, the contractive character dominates over the expansive one and 
results in ATDK < ATFL < ATFH. At  R = 2, there is an expansive migration with 
ATDK>ATFL>ATFH, corresponding to the r-space deficiency of the density 
localization in the FH approximation. Since the parameters c2 and x, which 
measure the magnitudes of the polarization and floating effects, are nearly 
maximum at R = 2, the reorganizations 8I are also maximum at this R. The 8Is 
for R = 1 are similar to but smaller than those for R = 2. This may reflect the fact 
that all the three functions converge correctly to the ls  (He +) AO in the united 
atom limit. In accord with the qualitative discussion in Sect. 3, the polarization 
and floating functions are indeed found to contribute to increase the contraction 
and expansion respectively at a large and a small R. Throughout  the whole range 
of R, the polarization effect is larger than the floating effect, and the importance 
of the directional distortion of the density is suggested in describing the chemical 
bond. 

The redistribution S f  [ = I - / F H ]  is shown in Fig. 3b, which governs changes 
in the stabilization energy AE (Fig. 5). For R = 8 and 4, the two effects promote 
the contraction of /" and result in Z~EDK< ~ F L  < ~ F H  in this R range. At 
R = 2, 8 [  reveals both the expansive and contractive density migrations, but 
the latter plays a primary role (AEDK < AEFL< AEFH) when p2/2 is considered. 

i ......... 2 4 I (c) TOTAL x i00 

- 

0 2 4 6 8 R 0 2 4 6 8 

�9 F L  

,iO0 

0 2 4 6 8 R 

Fig. 5. Stabilization energies obtained from the FH, FL, and DK momentum densities. Their 
decompositions into the atom-bond and parallel-perpendicular components are also shown 
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At R = 1, a pattern of expansion with the density migration from p - 0.3 to 
p--0.7 is dominant. However, a small density decrease is also observed for 
p > 1.9, and then the energy factor p2/2 offsets the effects of these reorganiz- 
ations, leading to a small energetic change. Since 8 f  is the integration of 8I 
with the prefactor I/R, 8[ shows a larger reorganization for a smaller R. 
Though the 8 f  connects the density behaviour directly with the stabilization 
energy, 8 f  for a small R has little intuitiveness of the proposed guiding principle 
of contraction and expansion. 

Fig. 6 shows the atom-bond partitioning of 8I and 8[ at/1 = 4 and 2. It is seen 
in Fig. 6a that the reorganization in 8I consists of the decrease of low momentum 
density in the atom part and the increase of high momentum density in the bond 
part. The contributions of these partitioned densities to the kinetic energy AT 
are given in Figs. 4a and b. Though the bond density suffers primary influence 
of the polarization and floating functions (see Sect. 3), the change in ATbond is 
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Fig. 6. Atom-bond partitioning of the polarization and floating effects on the momentum density 
distributions 
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smaller than that in &Tatom for R > 3. In the atom part, the density decrease 
reduces the kinetic pressure in this portion and hence lowers &Tatom, while in 
the bond part, the decrease in the kinetic pressure due to the density delocaliz- 
ation is nearly counterbalanced with the increase in the kinetic pressure due to 
the density increase, and 2XTbo,a remains almost unchanged. For R < 3, however, 
zlTbo,a for DK and FL increase considerably, since the localization of the bond 
density works to raise the kinetic pressure in cooperation with the density 
increase. Similar behaviours are observed for the atom-bond partitionings of 
8 [  (Fig. 6b) and zkE (Figs. 5a and b). As a result, the polarization and floating 
effects on the atom-bond partitioning emphasize the importance of the atom 
and bond parts respectively in the initial and final stages of the bond formation. 

Fig. 7 shows the reorganizations in the directional Compton profiles. The parallel 
part (~Ju at R = 4 (Fig. 7a) shows both of the contraction and expansion, reflecting 
the fact that the increased overlap in DK and FL not only decreases the kinetic 
pressure in the internuclear region (contractive effect) but also reduces the 
effective length of electron motion in the parallel direction (expansive effect). 
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Fig. 7. The polarization and floating effects on the directional Compton profiles 
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Energetically, the former gives larger contribution and AT~I lowers for DK and 
FL (Fig. 4d). However,  the expansive effect dominates at a smaller R (e.g. 
R = 2), leading to an increase of ATil. The changes in the perpendicular part 8J l  
(Fig. 7b) are very small as expected in the previous section. At R = 4, 8J• is 
contractive and AT• lowers (Fig. 4e) due to the mixing of the 2po- A O  which 
is more contractive than the ls  AO in this direction (DK) and due to the decrease 
of the orbital exponent  (FL). At R = 2, the expansive change and the increase 
in AT• appear, since the position density becomes bound more tightly to the 
nuclei (an increase in orbital exponent) with the concomitant increase in the 
kinetic pressure. Except for a very small R, the polarization and floating effects 
on the partit ioned energies are smaller for the directional partitioning than for 
the a tom-bond  one (Figs. 4 and 5). This may suggest the basis-dependence of 
the latter partitioning in this approach. 

5. Summary 

Based on the recently proposed method of momentum density, the pictures and 
roles of the the polarization and floating functions in p-space have been studied. 
Referring to the momentum density of the minimal LCA O  FH function, we 
have quantitatively examined the density redistributions due to the DK and FL 
functions together with their energetic contributions for the prototype bonding 
process in the H~- system. The essential points of the polarization and floating 
effects have been shown to be the modulation of the two-center part of momen-  
tum density by the addition of a term with a phase (DK) and by the enlargement 
of the period of oscillation (FL). The increased density migration from the 
one-center  to the two-center part is also important. As a result, the low momen- 
tum density increases at a large R, whereas the high momentum density increases 
at a small R. The former reflects the increased delocalization of the atomic 
density, while the latter suggests that the density accumulation in the bond region 
has a picture of localization at a small R. These density reorganizations are 
larger for DK than for FL throughout  the bonding process. The improvement  
by the FL function is shown to include the disturbance of high momentum 
distribution, corresponding to the destruction of cusps in r-space. The polarization 
and floating functions work to emphasize the contraction and expansion of 
momentum density during the process, and the reliability of the previous dis- 
cussion [2] based on the FH density has been confirmed. 
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